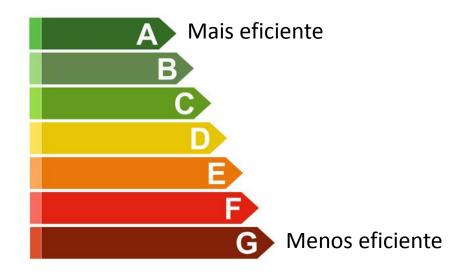
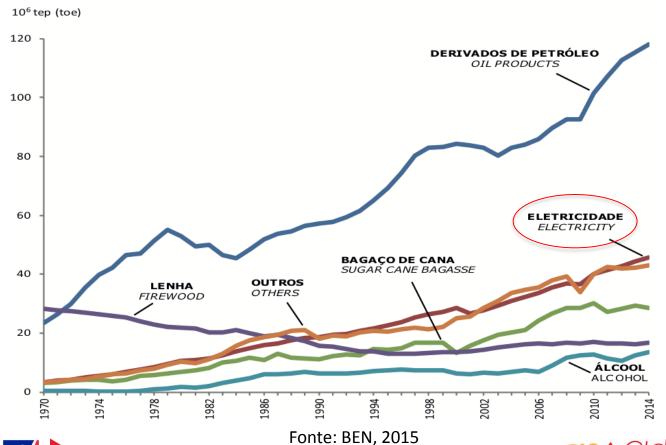


Eficiência Energética

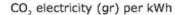


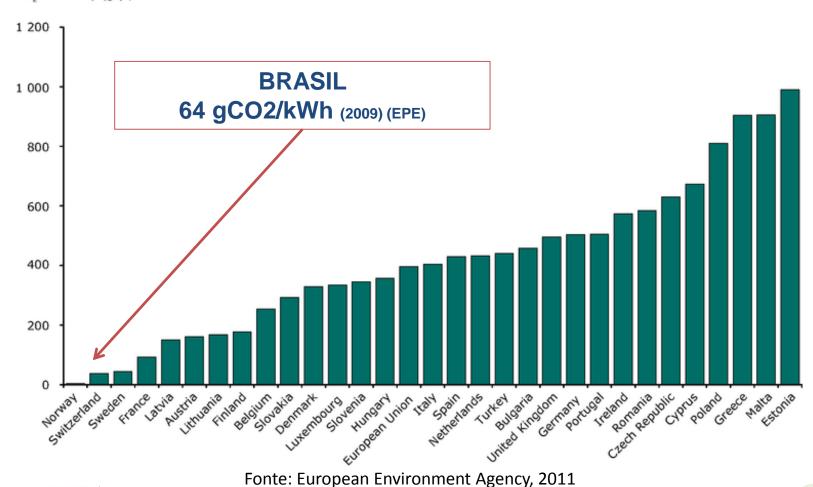
A eficiência energética consiste ter um menor gasto de energia para um mesmo trabalho ou gastar a mesma quantidade de energia para produzir mais.


Selo Procel – Responsabilidade do Inmetro Programa de Etiquetagem Brasileiro

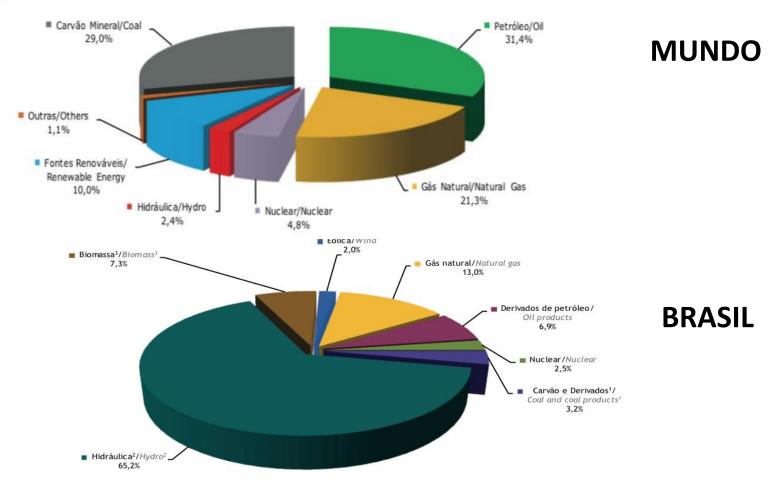
Potência (W) **Tempo (h)** Consumo (kWh)

											103 tep (toe)
FONTES	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	SOURCES
GÁS NATURAL	49	55	56	58	59	60	44	45	45	40	NATURAL GAS
LENHA	0	0	0	0	0	0	0	0	0	0	FIREWOOD
ÓLEO DIESEL	85	91	94	96	97	12	4	7	5	4	DIESEL OIL
ÓLEO COMBUSTÍVEL	61	55	85	87	87	3	6	8	11	11	FUEL OIL
GÁS LIQUEFEITO DE PETRÓLEO	441	410	422	409	373	381	421	256	257	257	LIQUEFIED PETROLEUM GAS
QUEROSENE	0	0	0	0	0	0	0	0	0	0	KEROSENE
GÁS CANALIZADO	0	0	0	0	0	0	0	0	0	0	GASWORKS GAS
ELETRICIDADE	2.815	2.842	2.900	2.972	3.031	3.180	3.283	3.424	3.553	3.666	ELECTRICITY
CARVÃO VEGETAL	0	0	0	0	0	0	0	0	0	0	CHARCOAL
OUTROS DERIVADOS DE PETRÓLEO	0	0	0	0	0	0	0	0	0	0	OTHER OIL PRODUCTS
TOTAL	3.451	3.453	3.557	3.622	3.648	3.636	3.758	3.741	3.871	3.978	707AL


Fonte: BEN, 2015



Emissões por kWh



Eletricidade no Mundo e no Brasil

Planejamento no Brasil

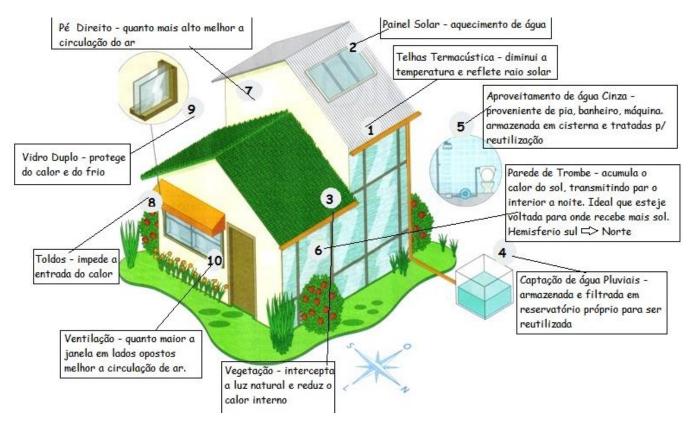
Plano Nacional de Energia

Planos Decenais de Energia

Plano Nacional de Eficiência Energética

PROGRAMA DE EFICIÊNCIA ENERGÉTICA EM PRÉDIOS PÚBLICOS

- Diminuir os gastos dos prédios públicos através da redução do consumo e da demanda de energia elétrica
- Melhorar as condições de trabalho, conforto e segurança dos servidores públicos;
- Capacitar administradores e servidores de prédios públicos em eficiência energética;
- Promover a capacitação laboratorial em eficiência energética.



- Arquitetura bioclimática ou passiva;
- (O caso da iluminação pública)
- Troca de equipamentos;
- Melhoria de processos focados em equipamentos;
- Retrofit
- Geração distribuída e cogeração;

Correta aplicação de elementos arquitetônicos observando-se o comportamento climático da região de implementação para garantir o conforto higrotérmico, com baixo consumo de energia.

Ventilação

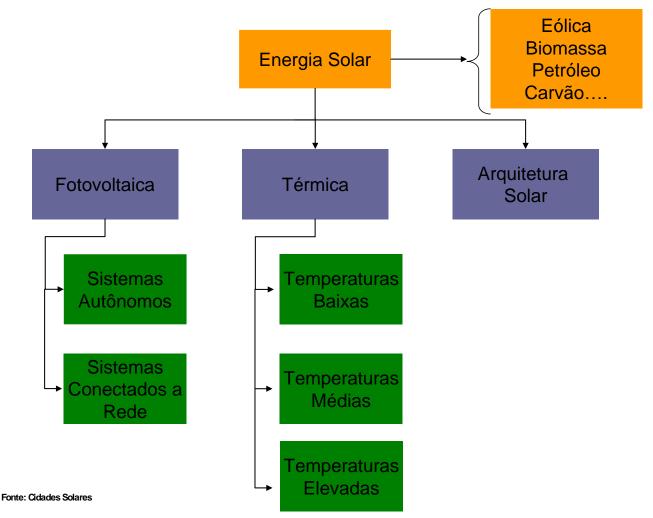
- Direção das correntes, velocidade média e massas de ar incidentes no projeto;
- Posição e dimensionamento de aberturas;
- Ventilação Cruzada;
- Circulação de ar.

Iluminação Natural

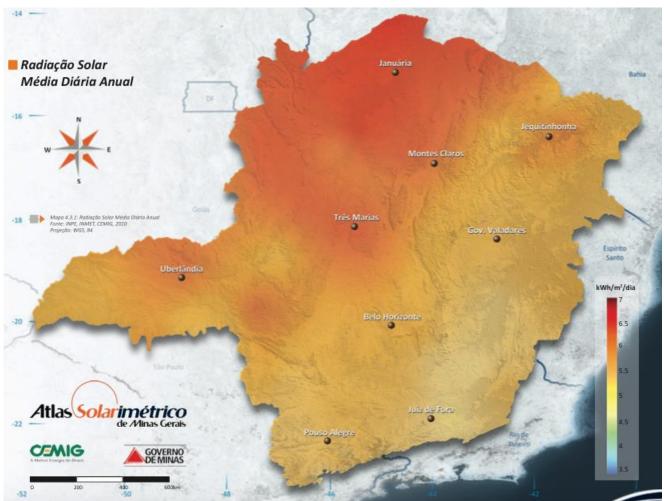
- Orientação solar para implantação;
- Clima regional;
- Uso das cores no interior e exterior;
- Controle de iluminação;
- Conhecer a temperatura diurna/noturna.

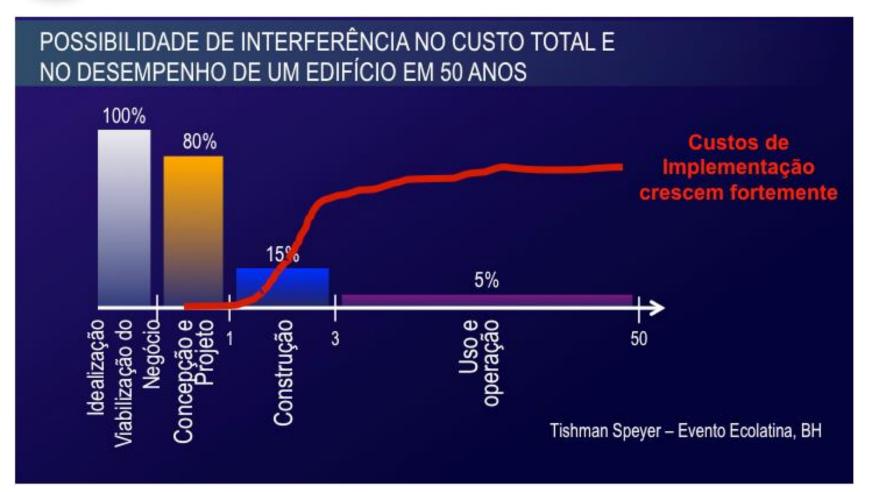
Sombreamento

Captação da água


Energia solar

Telhados





Benefícios Percebidos Impactos positivos de "edifícios verdes":

- Custos operacionais podem ser reduzidos de 8% a 9%;
- O valor do edifício pode crescer aproximadamente 7,5%;
- O retorno do investimento tem um potencial de 6,6%;
- A taxa de ocupação pode subir 3,5%
- O uso de energia pode ser reduzido entre 24% a 50%;
- As emissões de CO2 podem ser reduzidas de 33% a 39%;
- O uso da água pode ser reduzido em 40%;
- Resíduos sólidos podem ser reduzidos em 70%.

O caso da iluminação pública

- Art. 218 da Resolução Normativa nº 414/2010

A distribuidora deve transferir o sistema de iluminação pública registrado como Ativo Imobilizado em Serviço – AIS à pessoa jurídica de direito público competente.

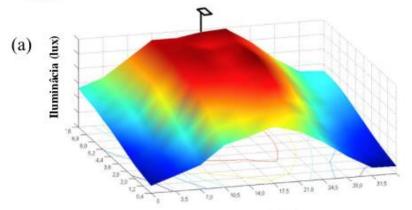
§ 20 Até que as instalações de iluminação pública sejam transferidas, devem ser observadas as seguintes condições: I - o ponto de entrega se situará no bulbo da lâmpada; II — a distribuidora é responsável apenas pela execução e custeio dos serviços de operação e manutenção; III - a tarifa aplicável ao fornecimento de energia elétrica para iluminação pública é a tarifa B4b

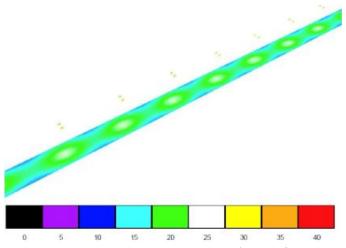
O caso da iluminação pública

Estudo em Curitiba

http://www.osetoreletrico.com.br/web/documentos/fasciculos/Ed76_fasc_iluminacao_cap5.pdf

Luminária tradicional		Luminária Led equivalente(mm)			
POTÊNCIA (W)	Reator (W)	Lúmens	Potência (W)	Lúmens	
70	14	5.600	28	2.100	
100	17	9.500	61	5.560	
150	25	14.000	61	5.560	
250	27	26.000	92	8.340	
400	40	48.000	123	11.120	

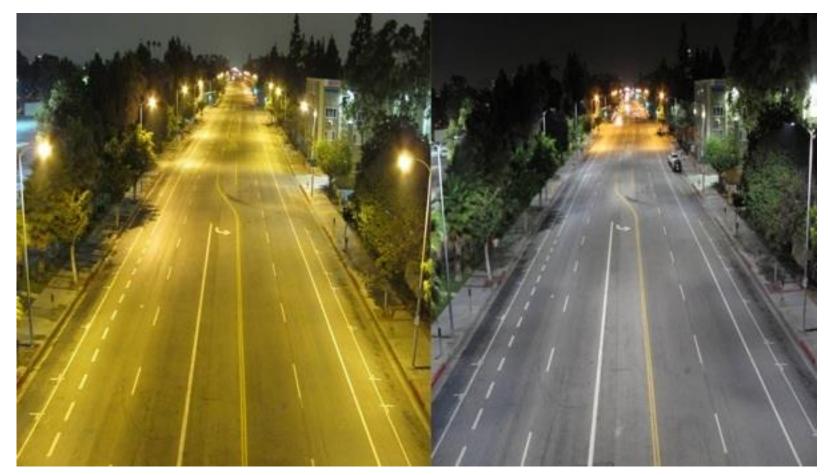

Luminária	Custo Inv total (mil R\$)	Custo E.E. 12 ANOS (MIL R\$)	Custo total (mil R\$)
Tradicional	31.121,33	251.158,87	282.280,20
Led	179.826,04	85.456,94	265.282,98
Diferença percentual			6,02%


O caso da iluminação pública

			9			
(b)	(XII					
	icia (
	Iluminâcia (lux)					
	4					
	H 1,31 1,12 2,90					
	2.50	12,114			17-	7
		22 3/H 4/H 5/12 1/h		10,6 14	175 21 265	28 21.5

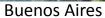
Figura 10. Curvas de iluminância ponto a ponto obtidas para as luminárias com (a) lâmpada de vapor de sódio e (b) LED. Fonte: Projeto piloto de iluminação pública empregando leds em substituição a lâmpadas de vapor de sódio em alta pressão. NIMO, JF

TIPO DE LÂMPADA	EFICIÊNCIA (lm/W)
Incandescentes	10 a 15
Halógenas	15 a 25
Mista	20 a 35
Vapor de mercúrio	45 a 55
Fluorescente comum	55 a 75
Fluorescente compacta	50 a 85
Vapor Metálico	65 a 90
Fluorescente eficiente	75 a 90
VSAP	80 a 140
VSBP	130 a 200
LED	70 a 208

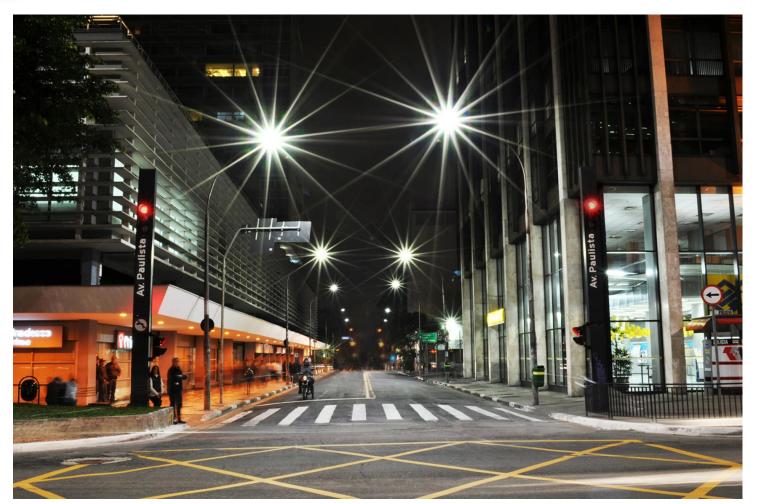

Simulação computacional realizada através do *software* Dialux Fonte: Eficiência elétrica em iluminação pública utilizando tecnologia led: um estudo de caso

O caso da iluminação pública - Exemplo

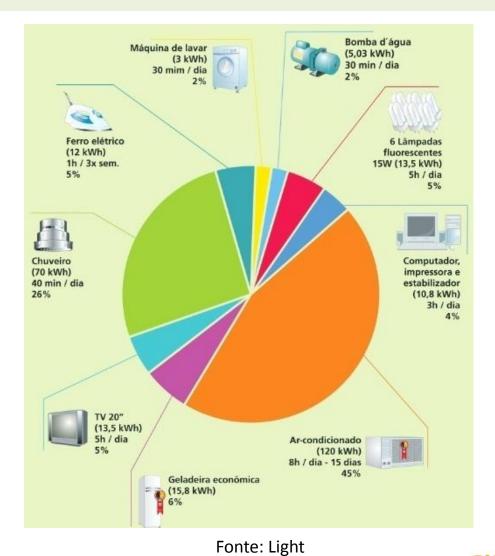
São Francisco



O caso da iluminação pública - Exemplo



O caso da iluminação pública - Exemplo



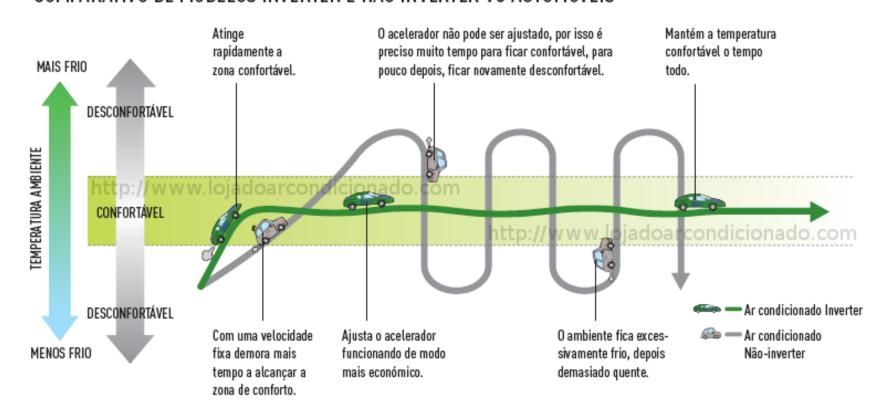
O consumo de uma pessoa

Troca de equipamentos (Iluminação)

Área de Iluminação	Antiga Tecnologia		Produtos que economizam energia hoje	Economia de Energia	Redução de CO² por lampâda por ano
Iluminação viária	Lâmpada de mercúrio de alta pressão	٠	CosmoPolis .	58%	133 kg
Iluminação de Lojas	₩ Hallo	٠	Halleto metálico 💡 de descarga cerâmica	86%	140 kg
Iluminação de escritórios e indústrias	TL8	٠	π.s 💆	61%	94 kg
Iluminação de residências	☐ Incandescente	•	CFLi 😡	90%	42 kg
Iluminação de residências	Incandescente	•	Redutor de energia helógena	30%	16 kg
LEDs	☐ Incandescente	Þ	LED S	80%	40 kg

Fonte: Sustentabilidade Phillips

(http://www.sustentabilidade.philips.com.br/eficiencia-energetica/lampadas-mais-eficientes.htm)


Melhorias de processo (foco lluminação)

- Desligamento automático das lâmpadas em ambientes sem usuários (sensores de presença);
- Uso de refletores e reatores eletrônicos ou eletromagnéticos;
- Buscar aproveitamento da iluminação natural;
- Determinação de áreas efetivas de iluminação;
- Individualização de circuitos;

Troca de equipamentos (Condicionamento de

AS VANTAGENS DO AR CONDICIONADO INVERTER. COMPARATIVO DE MODELOS INVERTER E NÃO INVERTER VS AUTOMÓVEIS

Fonte: Loja do Ar Condicionado

Melhorias de processo (foco condicionamento de

- Dimensionamento correto (considera diversos atributos)
- Estado de limpeza do equipamento redução de obstruções (evaporador, filtros, condersador etc.);
- Regulagem apropriada (termostato);
- Proteção das janelas contra raios solares;
- Vedação do ambiente;
- Local de instalação dos equipamentos;

Exemplo

Hotel Victoria – Freiburg

Eleito em 2010 o Hotel mais sustentável do mundo

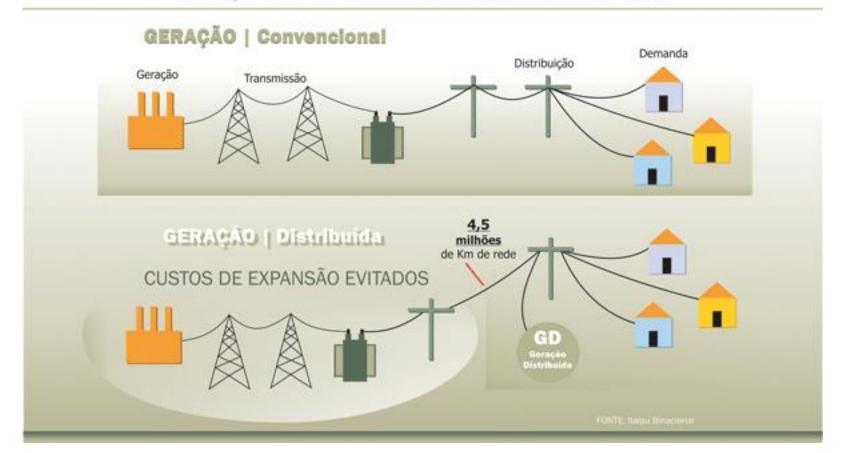
Exemplo – Hotel Victoria

- 210.000 kwh de energia elétrica e 450.000 kWh de aquecimento é o consumo anual do hotel.
- Cada hóspede consome aproximadamente **30 kWh de energia por noite**.
- A Planta solar pertencente ao hotel gera **21.000 kWh de energia solar por ano**.
- Quatro geradores eólicos instalados no telhado produzem 2 kW. Com a participação de uma planta eólica em Ettenheim, eles produzem anualmente 70.000 kWh de geração elétrica.
- Aproximadamente 50% da energia requerida pelo hotel é coberta pela própria geração eólica e solar.
- A produção de água quente é suplementada pelo sistema de aquecimento solar, que possui uma área de 30m2. Nos dias de sol, a geração atende a demanda de água quente para os chuveiros.

Nada mais é do que a popular "reforma", mas com um sentido de customizar, adaptar e melhorar os equipamentos, conforto e possibilidades de uso de um antigo edifício.

O consumo de energia do Empire State Building (NY) cairá 38%, com corte de 4,4 milhões de dólares anuais em gastos e de 105 000 toneladas de emissões de carbono nos próximos quinze anos - o equivalente a tirar 20 000 carros das ruas.

Custo: 550 milhões de dólares



Geração distribuída

GERAÇÃO DISTRIBUÍDA - METODOLOGIA OPERACIONAL

Geração distribuída

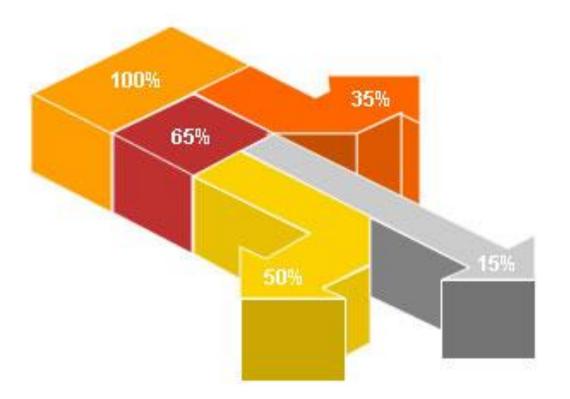
GERAÇÃO CONECTADA À REDE

A energia captada pelos painéis solares e pelo aerogerador é instantaneamente consumida pela residência.

Caso seja necessário um volume maior de energia, a rede elétrica complementa o fornecimento normalmente.

Caso haja excedente de geração em algum horário do dia, essa energia é armazenada na rede elétrica para poder ser consumida posteriormente.

Fonte: Pratil



Cogeração

Combustível

🧶 Energia elétrica

Energia térmica

Perdas

Fonte: Galp Energia

environnement et stratégie

Obrigado pela atenção!

Contato:

V.Goncalves@enviroconsult.fr

www.i-care-consult.com

